
SokweDB Technical Documentation

Karl O. Pinc, The Meme Factory, Inc. kop@karlpinc.com

2024-03-01 16:12:00 UTC

CONTENTS

1 Technical Documentation 1
1.1 Introduction . 1
1.2 System Architecture . 3
1.3 Entity Relationship Diagrams . 7
1.4 Code Tables . 10
1.5 Data Tables . 13
1.6 Data Retrieval Views . 19
1.7 SQL Functions . 20
1.8 APPENDIXES . 21
1.9 Indices and tables . 23

i

ii

CHAPTER

ONE

TECHNICAL DOCUMENTATION

1.1 Introduction

This document describes the design and capabilities of the SokweDB database and related systems.

1.1.1 About This Document

This document describes the SokweDB data management system, it’s features and capabilities. This includes the
system design principals, a description of the database’s tables, and the intended usage of related programs. It
does not describe the procedures used to enter data into the system or extract data from it. Nor does it describe the
details of how to operate all related programs, or maintain the underlying software.

Conventions

In other words, this document describes the system’s capabilities. How to use the system on a day-to-day basis,
which features are used in which ways, and similar, are to be found elsewhere.1

This section describes the conventions used within this document, which also speaks to the conventions of the
overall database design.

There are a number of conventions regarding character case. The database is case insensitive when it comes to
the names used to identify content – table names and column names and so forth.2 Within this document schema
names are written with an initial capital letter, table and view names are written in all upper case, and column
names are written with initial capital letters.

Unless otherwise noted all columns must contain a value. Note that an empty string, the series of characters
consisting of zero characters, is a value. The empty string3 is a string and so it is reasonable to compare it with
other non-empty strings. The empty string is distinct from NULL4, which means “no information”, and is used
when there is no value/no data at all.

Data consistency is guaranteed only when the guarantee is explicitly mentioned.5 Care must be taken when updating
data unless there is an explicit guarantee of data consistently.

This document uses a particular vocabulary, which informs the table names within the database. The selection of
the vocabulary is based on the terminology in use at the JGI and may need some study for those not familiar with
it.

1 The wiki, found at https://sokwe.janegoodall.org/, is a good place to document day-to-day procedures and practices.
2 To be precise, unless special steps are taken the database, and SQL, is case-insensitive when it comes to names.
3 Written '' in SQL.
4 Written NULL in SQL.
5 The notations in the Entity Relationship Diagrams are dense in constraints, constraints built into the database, which ensure data integrity.

1

https://sokwe.janegoodall.org/

SokweDB Technical Documentation

A Guide for the Reader

This is a reference document, and as such is not expected to be read from front-to-back.

Care must be taken when querying columns which allow NULL values. SQL uses a three valued logic, the values
being TRUE, FALSE, and NULL. This only comes into play when a NULL value is encountered but can be a particularly
important factor when a single query relates multiple tables.

1.1.2 System Design

The system design emphasizes first, data integrity, and second, low long-term cost. The database engine chosen,
PostgreSQL, supports concurrent multi-user data entry and retrieval, which minimizes the amount of inter-user
coordination required and enhances usability.

These design goals lead to the following design elements.

Data integrity is enforced within the database. This allows any program to be used to interact with the database
and update database content. Costs are kept down because generic Open Source user interfaces may be used to
interact with the database. No matter the tool used, the integrity of the data is maintained.

A web-based user interface, including a wiki which allows rapid web-page development, maximizes availability.
The primary method of interacting with the database is SQL, the industry standard relational query language. The
amount of SQL which must be learned can be, depending on the amount of development effort spent, reduced to
an absolute minimum through the use of views – in short, pre-packaged queries.

Data is kept secure though industry-standard practices. These include the encryption of communications, the
association of accounts with individuals, the secure authentication required for account access, and the use of in-
database access controls to limit the permissions of user accounts. Because individual people are granted direct,
but controlled, access to the database itself there is no “middleware” which, when bypassed, has unlimited access
to the data.

A minimal number of bespoke programs limits the amount of code development required, and, even more signif-
icantly, limits the long-term maintenance costs. The Open Source licensing of the SokweDB system minimizes
cost by sharing long-term development of those portions of the system used by more than one institution.

Costs are kept down by minimizing the amount of user-interaction available through bespoke programs. Interacting
with a person, particularly reporting errors which arise, requires a lot of programming. Therefore the system is
designed around bulk input and output.

Individual accounts are given their own, private, workspaces (schemas). This separates private from shared data,
which allows for better long-term data maintenance.

About Databases

In PostgreSQL a database is a stand-alone data store. Queries can easily interact with and combine all data kept
within a single database. Access to data outside a database, from within the database, is possible but requires
additional work that depends upon the data source.

About Tables

Databases store data in tables. Related singleton datum, such as a single name, a single birthdate, a mother, are
kept together in a single row of a table constructed to hold this particular kind of data. Data of the same kind kept
within a single table are are found in a column of the table. Columns have names, like “name”, “birthdate”, and
“mother_id”.

So a table is a grid containing (classically) a single value in each cell of the grid. Each row of the table represents
a physical thing, such as a chimpanzee, or an abstract thing, such as the distance to some designated chimpanzee.
E.g., a row with the 2 columns: a distance in meters, and the id of the 2nd chimpanzee. Each column of a table is
expected to contain the same “kind” of data; a name should not go in the “birthdate”column.

2 Chapter 1. Technical Documentation

https://postgresql.org
https://en.wikipedia.org/wiki/Open_source

SokweDB Technical Documentation

The SokweDB design endeavors to name tables in the plural, as they hold multiple rows. Column names are
singular, as each column of each table holds a single value.

About Views

Views appear to be tables but they are not. Views are virtual, when queried they deliver the results of a query run
against the database’s actual tables. An SQL query can freely intermix the use of tables and views. When setup to
do so, changing the data in a view can change data in the database’s underlying tables.

Views make it easy to reuse complex or commonly used queries, or portions of queries. They allow a database
designed around the capabilities of the computer to be interacted with in a fashion that makes sense to people.
Although the views do not appear in the entity relationship diagrams that document the underlying database, and
so are omitted from the high level overview these diagrams provide, most users will greatly benefit if they take the
time to understand how the views fit into the overall database. Where views exist, most will usually find it easier
to work with the views than with the underlying tables.

Views that have the structure, the corresponding columns, of the data after collection in the field and entry into
electronic form, are used to upload data into the database. Inserting data into these views distributes the uploaded
data into the underlying tables. These sorts of views may or may not be useful when retrieving data from the
database for analysis. Investigate to see if some other view or query is better suited rather than automatically using
a view created for data upload to do analysis.

About Schemas

Schemas partition databases.12 They work like directories or folders do in filesystems, but can be only one level
deep. A schema cannot contain another schema.

Schemas organize database content. One purpose is to allow a user to focus on the content of some schema(s) and
ignore what is in other schemas.

1.2 System Architecture

Primary importance is placed on data integrity. The system is optimized for data integrity rather than maximal
performance.1

The expectation is that the database will be read more often than written and is configured with that in mind.2

1.2.1 Databases

SokweDB utilizes at least 3 databases, each for a different purpose. There may also be other databases available.1

1 The term “schema” is overloaded. A separate meaning defines a schema as the tables, columns and relationships between tables that exist
within a database. So a schema can denote the design of a particular database.

2 A PostgreSQL schema can be thought of as a MySQL database, or vice versa.
1 Among other choices of configuration, SokweDB ensures that concurrent database updates by different users will not lead to data incon-

sistency by setting the transaction isolation to serializable.
2 In particular, many indexes exist. This speeds query results but slows database writes.
1 Particularly during periods of heavy software development, there may be a separate database dedicated to each developer.

1.2. System Architecture 3

https://www.postgresql.org/docs/current/transaction-iso.html

SokweDB Technical Documentation

sokwedb

The sokwedb database contains the final, “official”, data. All research takes place in this database.

sokwedb_test

The sokwedb_test database is used, by everyone, for testing. Typically, this database contains a copy of the
sokwedb data. It may be desirable to upload new data into the sokwedb_test database before uploading into the
sokwedb database. This allows the data to be cleaned and examinations made before upload into production.

sokwedb_dev

The sokwedb_dev database is for software and database development. It is primarily used by the system’s devel-
opers to try new features. After coordinating with the developers, it could used by anyone to test something that
seems particularly dangerous and might interfere with normal operations if tested in the sokwedb_test database.

1.2.2 Special Data Values

As much as possible SokweDB utilizes a controlled vocabulary within the system’s data store. To provide the
system’s users1 with control over the codes used, this vocabulary may be tailored by adding or deleting codes to or
from the tables which define the system’s vocabulary.

At times, SokweDB recognizes that particular codes have special meanings, for example, the BIOGRAPHY_DATA
table’s F (female) Sex code. The meaning of these codes is fixed into the logic of the system. As examples, an
individual must be female to be allowed to have a menstruation, or, the individual must be in the community to
be sighted in the community. Some of these codes, like sex, are not defined in tables, they are hardcoded into the
system. Others are defined in support or other tables. Because these codes have intrinsic meaning, they cannot be
removed from the SokweDB system nor should their presence in the data be used to code a different meaning from
that which the code presently has. For example, the meaning of DEPARTTYPES code value O (alive2) should not
be changed to mean “death due to meteorite impact” because the system’s programs would then allow individuals
to have sexual cycles after death. Each of the “special” values that the system requires retain particular meaning
is listed in the Special Values section of the code table’s documentation. For further information on the meaning
of the “special” values, see the description of the table(s) that contain the code values. Should the meaning of one
of these “special” values need to be changed, the logic in the SokweDB programs should be adjusted to reflect the
change.

SokweDB prevents ordinary users from altering rows that give meaning to special values in an attempt to prevent
mis-configuration of the system. Only users with permissions to modify a table’s triggers may alter the table’s
special values.3 This is not a panacea. To return to the example above, not only does the system expect a DE-
PARTTYPES code of O to mean alive, it also expects O to be the only code in DEPARTTYPES that means alive. If
another DEPARTTYPES code is created to indicate a more specific sort of “alive-ness”, unless re-programmed the
system will consider all individuals given that code to be dead, not alive. A careful review of the documentation
should be undertaken before modifying the content of tables that instantiate special values.

1 As opposed to the system’s programmers.
2 Specifically, “still alive and present as of the last census date”.
3 Rather than create another role just to control the alteration of special values the choice was made to use PostgreSQL’s TRIGGER privilege.

This allows superusers (or the somewhat less privileged) the necessary access. This conveniently separates regular users from those who can
do more.

4 Chapter 1. Technical Documentation

SokweDB Technical Documentation

1.2.3 Dates and Times

In SQL dates and times are written as strings, so are enclosed in single quotes (or dollar quotes). But the system
must be told that the data is a date, or a time, etc.1 The easy way to type this is to follow the string with two colons
and then the name of the appropriate data type. This is best illustrated with an example:

SELECT '1707-05-23'::DATE;

Input and Output Representations

Date values are always output in YYYY-MM-DD format.2 This is unambiguous and more universal than most date
representations.

Date values may be input in a wide variety of formats. Ideally, they would be input as YYYY-MM-DD but when
this is not the case the system first attempts to recognize dates as if they were written in MM-DD-YYYY format.

For further information on date and time representation see the PostgreSQL documentation, either that on dates
and times or the details of date/time interpretation.

Time Zones

SokweDB contains few, if any, time-zone aware columns. For this reason, and reasons given below, most users
will not need to concern themselves with time zones.

Date + time combinations, called timestamps, may or may not be time zone aware. This is also true of plain,
24-hour, time values. Time zone aware values display differently depending on the time zone in which they are
viewed – or at least they can display differently. A time zone aware time value which displays as 10:00AM in the
US/Eastern time zone would display as 9:00AM in the US/Central time zone.

Dates and times without a time zone, most time-related data recorded in SokweDB, are as-of the time recorded in
the field. So in Gombe time, and the time values won’t change no matter where viewed.

Some other dates and times, perhaps those involving administrative actions like, perhaps, the automatically
recorded time of database updates, may be time zone aware.

By default, time-zone aware data is input and output in the UCT time zone. If you wish to have time-related data
be input and output in a different time zone you must tell the server which time zone you are in.3 This does not
happen automatically. Further, the change to your time zone only lasts for the duration of your connection to the
database. Practically speaking, this usually, depending on the tool you use to access the database, means that you
must change your time zone every time you submit SQL statements to the server.

To sum up, most of the time-related values you work with will be in Gombe time. The rest are in UCT unless you
put some work into changing your time zone.

1.2.4 Users and Database Permissions

Each person should have their own login/username, which should not be shared.

The database associates each login with specific permissions to objects (tables, etc.) within the database.

To access the data in the database permission must be granted. This is done per user login.

There are 2 ordinary levels of permission. Their names are:

reader
Permission to query database content.

1 The string is said to be cast to the desired data type.
2 This is the ISO 8601 format.
3 E.g. SET TIME ZONE 'US/Mountain';

1.2. System Architecture 5

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING
https://postgresql.org
https://www.postgresql.org/docs/current/datatype-datetime.html
https://www.postgresql.org/docs/current/datatype-datetime.html
https://www.postgresql.org/docs/current/datetime-appendix.html

SokweDB Technical Documentation

writer
All the permissions of reader plus permission to alter the content of the database.

Ordinary permissions are database roles. They can be granted with SQL, e.g.:

GRANT reader TO someuser;

Or grants can be made through some other mechanism.

The Administrator Permission Level

The admin permission level has maximal permissions. It is used to create superusers.

Permissions are implemented as PostgreSQL roles. It is the admin role that owns all the SokweDB database
objects, the tables, views, etc.

Superusers (aka Administrators)

Superusers have permission to do anything with a database, create and destroy tables, create and destroy user logins,
etc.1 Only a few people are expected to have superuser privileges.

Those people with superuser privileges will typically have 2 logins, one ordinary login and a second login with
superuser privileges. The superuser login should be used only when necessary, as when a new person is given
access to SokweDB and a new database login must be created. Ordinary interactions with the database, data entry,
data retrieval, etc., should be done with a non-superuser login.

Developers

Developers, the users who maintain the database structure, etc., must be superusers.

1.2.5 Schemas

Each SokweDB database contains a number of schemas. Some of these schemas will not be documented herein;
it is likely that some schemas will be created to hold shared data, data not part of SokweDB itself but related to it.

The sokwedb schema

The sokwedb schema contains the data collected in the field. It is the primary schema of interest to the researcher.

The codes schema

The codes schema contains those tables which control the data vocabulary defining the codes able to be recorded
in the database. Because the codes defined in this schema are often used and well-known the schema’s tables are
not often of interest. This schema exists so that the sokwedb schema is not cluttered with un-interesting tables.

Most of the tables in this schema contain one row per defined code. The codes are usually kept in a column that
has the name of table, but a name which is singular instead of plural. There is also a Description column, which
describes the coded value.

A few of the tables in this schema are more complex, and contain more than 2 columns. These are often tables which
contain ‘meta information’ involving the mechanics of the data collection process. Things like lists of researchers,
observers, or equipment used in the data collection process.

1 The Azure cloud platform does not allow logins (aka roles) to have the SUPERUSER role attribute. Instead, the CREATEDB and CREATEROLE
attributes are most that can be given. The SokweDB admin group (aka role) has CREATEDB and CREATEROLE privileges. This is enough that
there is no need for the actual SUPERUSER attribute.

Membership in the admin role and having the role attributes CREATEROLE and CREATEDB is what grants a role (login) superuser privileges.

6 Chapter 1. Technical Documentation

https://www.postgresql.org/docs/current/user-manag.html

SokweDB Technical Documentation

The upload schema

The upload schema contains the views used during the data upload process. These are, usually, of interest only to
those who upload data into the database.

The lib schema

The lib schema (short for “library”) contains things used by SokweDB’s internal mechanisms. The end-user
should not need to be concerned with its content.

The per-user private schemas

Individuals are given their own schemas in which they can do whatever they wish. So each regular ac-
count/login/username has an associated schema with a name the same as that of the account.

Caution: It is usually bad practice to grant another person access to something in a private schema. It is often
better to create another, shared, schema. In this way individuals, and their accounts and private schemas, can
come and go without affecting the work of the institution.

Because of the schema search order the schema name must be used to qualify anything created in the user’s schema.
E.g., to create the table foo in the user mylogin’s schema:

CREATE TABLE mylogin.foo (somecolumn INTEGER);

1.3 Entity Relationship Diagrams

Entity Relationship Diagrams, or ER Diagrams, are graphic pictures of how rows in the database’s tables relate to
other rows. They are dense in information about what data exists and in what tables it can be found.

Most tables have have an id, or key, column that contains a number unique to that row within its table. The id
can be used, in perpetuity, to refer to its related row and distinguish it from all the other rows of the table. Ids are
arbitrary, although for convenience they are often sequentially generated integers. The name of the column holding
the id value is not always Id, although it sometimes is.

A relationship is established between the rows of two tables when an id value from one table appears as data in the
other. The relationship notion is made most clear by way of diagrams and examples. The relationship concept is
at the heart of relational databases and, while the underlying idea is rather simple, it took many years to develop
relational database concepts so don’t expect a full understanding immediately.

When an id value of a row in one table appears as data in a second table, the data in the second table can be used
to retrieve the identified row from the first table.1 When an id value of a row in the first table appears as data only
once in the second table, the two tables are said to have a one-to-one relationship. One row in the first table relates
to one (or possibly zero) row(s) in the second table. When a row’s id value can appear in more than one row of a
second table, the two tables are said to have a one-to-many relationship. One row of the first table can be related
to many rows in the second table. One-to-many relationships are more common than one-to-one relationships. In
the ER diagrams each table (entity) is a box, and each box contains a list of the table’s columns. The lines between
the boxes represent the relationships between the tables.

For example, individuals can transfer between communities zero or more times. A single individual is one kind of
entity recorded in the database, one transfer of a single individual between communities is a second kind of entity.
Each individual is represented in the database as a single row in a table. Each transfer is likewise represented by a
single row in a different table.

1 And the reverse is true. The id of a row in the first table can be used to find the row in the second table that holds it.

1.3. Entity Relationship Diagrams 7

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

SokweDB Technical Documentation

The ER diagram of this shows that a row representing a one individual can be “connected to” zero or more rows
recording community transfers. The diagram also shows that a transfer must be “connected to” exactly one indi-
vidual, the individual who is changing communities. A transfer should not be able to exist unless the individual
transferring also exists.

1.3.1 Key

Fig. 1: Key to the Entity Relationship Diagrams

1.3.2 Demography

Contents

• Code Tables

– COMM_IDS (Community IDentifiers)

– COMM_MEMBS_SOURCES (COMMunity MEMBershipS SOURCES)

– DEPARTTYPES (community Departure reasons)

– ENTRYTYPES (community Entry reasons)

– PEOPLE

8 Chapter 1. Technical Documentation

SokweDB Technical Documentation

Fig. 2: Demography

1.3. Entity Relationship Diagrams 9

SokweDB Technical Documentation

1.4 Code Tables

1.4.1 COMM_IDS (Community IDentifiers)

Each row represents a community. There is one row for every chimpanzee community on which any information
has been recorded, whether presently under-study or not. This includes the special community named Unknown,
which is used when an individual cannot be assigned to a community.

Special Values

The CommID value of Unknown is special.

Column Descriptions

CommID (Community IDentifier)

A short sequence of characters which identify a community. Each value stored in this column must be unique.
This column may not be NULL. This column may not be empty text, its textual values must contain characters. This
column may not contain whitespace characters.

Name

The name of the community. Each value stored in this column must be unique. This column may not be empty
text, its textual values must contain characters and must contain at least one non-whitespace character. This column
may not be NULL.

Notes

Notes on the community, how membership is assigned and other relevant information. This column may be empty
text. It need not contain characters, but it may not contain only whitespace characters. This column may not be
NULL.

MembCriteria (Membership Criteria)

A description of the requirements to be a member of the community. This column may be empty text. It need not
contain characters, but it may not contain only whitespace characters. This column may not be NULL.

1.4.2 COMM_MEMBS_SOURCES (COMMunity MEMBershipS SOURCES)

Contains one row for each data source from which community membership information is derived.

10 Chapter 1. Technical Documentation

SokweDB Technical Documentation

Special Values

None.

Column Descriptions

CommMembsSource

A somewhat abbreviated description which identifies a data source from which community membership can be
derived. Each value stored in this column must be unique. This column may not be NULL. This column may not
be empty text, its textual values must contain characters. This column may not contain whitespace characters.

Description

A longer description of the CommMembsSource identifier. This column may not be empty text, its textual values
must contain characters and must contain at least one non-whitespace character.

1.4.3 DEPARTTYPES (community Departure reasons)

Contains one row for each way a chimpanzee can leave a community, plus a special row with a code of Unknown
to indicates the individual was in the community when last observed.

Special Values

The DepartType value of Unknown is special. It indicates the individual is still alive and in the community. Only
individuals that are in a community may be observed in the community.

Column Descriptions

DepartType

A one character code identifying a way an individual can leave a community. Each value stored in this column
must be unique. This column may not be NULL. This column may not be empty text, its textual values must contain
characters. This column may not contain whitespace characters. This column may not contain lower case letters.

Description

A description of the code. This column may not be empty text, its textual values must contain characters and must
contain at least one non-whitespace character.

1.4.4 ENTRYTYPES (community Entry reasons)

Contains one row for each way a chimpanzee can enter a community.

1.4. Code Tables 11

SokweDB Technical Documentation

Special Values

None.

Column Descriptions

EntryType

A one character code identifying a way an individual can enter a community. Each value stored in this column
must be unique. This column may not be NULL. This column may not be empty text, its textual values must contain
characters. This column may not contain whitespace characters. This column may not contain lower case letters.

Description

A description of the code. This column may not be empty text, its textual values must contain characters and must
contain at least one non-whitespace character. This column may not be NULL.

1.4.5 PEOPLE

Contains one row for each person involved in data collection. Anyone who’s identity is recorded in SokweDB must
have a row representing them in this table.

Note that, for reasons of simplicity and performance, SokweDB accepts only the ASCII character set.1 (Those
characters found on a standard U.S. keyboard.)

Special Values

None.

Column Descriptions

Person

A short character string used to identify the person. Each value stored in this column must be unique. This column
may not be NULL. This column may not be empty text, its textual values must contain characters. This column may
not contain whitespace characters.

Name

The name of the person. This column may not be empty text, its textual values must contain characters and must
contain at least one non-whitespace character. This column may not be NULL.

1 The database could accept the full-set of Unicode characters, providing glyphs for all languages and cultures as well as a full set of emoji.
And if collation (sorting) was configured so as not to support language and cultural conventions then there would be no performance impact.

But this would allow, say, chimpanzees to be named with Chinese ideographic glyphs, allowing arbitrary glyphs to be used anywhere text
might appear. Because this is not desired we would need to institute additional controls to keep the data clean. It is simpler to live with the
ASCII character set when it comes to recording people’s names.

12 Chapter 1. Technical Documentation

SokweDB Technical Documentation

Description

A description of the person, should such be necessary to distinguish them from other people with the same or similar
name. This column may be empty text. It need not contain characters, but it may not contain only whitespace
characters. This column may not be NULL.

Active

A boolean value. Whether or not the row can be used in new data. When this column is FALSE the Name value
cannot be used in rows that are newly inserted into the database. Further, when rows are updated an existing value
cannot be set to the inactive Name. This column may not be NULL.

Unlike most other data validation checks, Active can be changed from TRUE to FALSE even though the Person value
is used elsewhere in the database. This allows time for existing data to be cleaned while preventing undesirable
values from appearing in new data.

1.5 Data Tables

1.5.1 BIOGRAPHY_DATA

Each row represents a chimpanzee. This table contains one row for each chimpanzee on which data has ever been
recorded (in SokweDB), and an additional row for UNK a generic value used when a chimpanzee is unrecognized.
BIOGRAPHY_DATA contains the basic demographic data of individual chimpanzees.

Note: The BIOGRAPHY view may be preferred to using the BIOGRAPHY_DATA table.

A mother must be female; the Sex must be F (female) of the BIOGRAPHY_DATA row identified by an offspring’s
MomID.

A father must be male; the Sex must be M (male) of the BIOGRAPHY_DATA row identified by an offspring’s DadID.

A female cannot be too young when giving birth. The difference between the mother’s maximum birthdate, the BD-
Min of the BIOGRAPHY_DATA row identified by an offspring’s MomID, and the offspring’s minimum birthdate,
the BDMin of the offspring, cannot be less than 8 years.

A male cannot be too young when becoming a parent. The difference between the father’s maximum birthdate, the
BDMin of the BIOGRAPHY_DATA row identified by an offspring’s DadID, and the offspring’s minimum birthdate,
the BDMin of the offspring, cannot be less than 10 years.

When the individual is not the first recorded offspring of their mother, based on the BirthDate of all recorded
maternal siblings, the FirstBorn value must be N (not first born).

The date the individual entered the study (EntryDate) may not be before the individual’s birth date (BirthDate).

The date the individual left the study (DepartDate) may not be before the date the individual entered the study
(EntryDate).

The maximum age of an individual, the time span between the individual’s earliest possible birth date (BDMin)
and their DepartDate, may not be more than 70 years.

DadPrelim must be NULLwhen DadID is NULL. Otherwise DadPrelim must not be NULL. DadIDPub must be NULL
when DadID is NULL. Otherwise DadIDPub must not be NULL.

The row defining the unknown individual, the BIOGRAPHY_DATA row having an AnimID value of UNK, is special
and cannot be altered or deleted by ordinary user accounts.

1.5. Data Tables 13

SokweDB Technical Documentation

AnimID (Animal IDentifier)

A short sequence of characters which uniquely identify the chimpanzee. Each value stored in this column must
be unique. This column may not be NULL. This column may not be empty text, its textual values must contain
characters. This column may not contain whitespace characters. The value of this column cannot be changed.

AnimIDNum (Animal IDentifier Number)

A unique positive integer used to identify the chimpanzee in SIV papers. Each value stored in this column must be
unique. This column may be NULL.

These are the former Ch numbers from Beatrice Hahn’s lab.

AnimName (Animal Name)

The name of the chimpanzee. Each value stored in this column must be unique. This column may not be empty
text, its textual values must contain characters and must contain at least one non-whitespace character. This column
may not be NULL.

BirthComm (Birth Community)

The COMM_IDS.CommID of the community in which the individual was born. This column may be NULL when
the birth community is unknown.

BCCertainty (Birth Community Certainty)

A code indicating the certainty of the BirthComm, the certainty of the birth community. Only 2 values are allowed,
C when the birth community is certain and U when the birth community is uncertain. This column may not be
NULL.

Sex

A code indicating the sex of the individual. Only 3 values are allowed: M for males, F for females, and U when the
sex is unknown. This column may not be NULL.

MomID (Mother’s AnimID)

The AnimID of the individual’s mother, when known. This column may be NULL.

DadID (Father’s AnimID)

The AnimID of the individual’s father, or NULL when not known.

This column may be NULL.

14 Chapter 1. Technical Documentation

SokweDB Technical Documentation

DadPrelim (Is Paternity Preliminary?)

A boolean value. When TRUE, the paternity assignment is preliminary. This column may be NULL.

DadIDPub (Publication of Paternity)

Citation of the publication where paternity was declared, or ‘Unknown’ when paternity has not yet been published.
This column may not be empty text, its textual values must contain characters and must contain at least one non-
whitespace character. This column may be NULL.

FirstBorn

A code indicating whether the individual is the mother’s first born. One of 3 values are allowed: Y means known
to be the first born, N means known not to be the first born, and U means that the firstborn status is unknown. This
column may not be NULL.

BirthDate

The individual’s (often estimated) birth date. This column may not be NULL. This value may not be before
1900-01-01 or after the current date.

BDMin (Minimum Birth Date)

The earliest possible birthdate. If born into the study, this is the last date prior to birth that the mother was seen
without the infant. This column may not be NULL. This value may not be before 1900-01-01 or after the current
date.

BDMin (Maximum Birth Date)

The latest possible birthdate. If born into the study, this is date of the first sighting of the infant. This column may
not be NULL. This value may not be before 1900-01-01 or after the current date.

BDDist (Birth Date Distribution)

The probability distribution of the likelihood of birth between BDMin and BDMax. Only one of 2 values are
allowed, N when it is most likely that the actual birthdate is closer to BirthDate than to BDMin or BDMax, or U
when any birthdate between BDMin and BDMax is equally likely. This column may not be NULL.

EntryDate

The date the individual entered the study; the date first seen. This column may not be NULL.

EntryType

An ENTRYTYPES.EntryType code indicating how the individual entered the study. This column may not be NULL.

1.5. Data Tables 15

SokweDB Technical Documentation

DepartDate

The date the individual was last in the study, or the date the individual was last seen. For living individuals this is
the date of last census. This column may not be NULL.

DepartType

A DEPARTTYPES.DepartType code indicating that the individual is still alive and under study, or how the indi-
vidual left the study. The DEPARTTYPES.DepartType O value is special. It indicates the individual is still alive
and in the community. This column may not be NULL.

1.5.2 BIOGRAPHY_LOG

Each row documents a change made to a BIOGRAPHY_DATA row. Changes have been logged since 2013-07-01.

BLID (Biography Log IDentifier)

A unique, automatically generated, positive integer which serves to identify the row. The value of this column
cannot be changed. This column may not be NULL.

DateOfUpdate

The date on which the update was made. This date cannot be before 2013-07-01 and cannot be after the current
date.

AnimID (Animal IDentifier)

The BIOGRAPHY_DATA.AnimID which identifies the chimpanzee who’s information was updated. This column
may not be NULL.

Description

A description of the changes made. This column may not be empty text, its textual values must contain characters.
This column may not be NULL.

Rationale

The rationale for the change to the BIOGRAPHY_DATA data. This column may not be empty text, its textual values
must contain characters. This column may not be NULL.

MadeBy

The PEOPLE.Person designating the researcher who made the update. This column may not be NULL.

16 Chapter 1. Technical Documentation

SokweDB Technical Documentation

1.5.3 COMM_MEMBS

Each row represents an un-interrupted series of days during which the given chimpanzee is a member of the given
community. The unit of time is the day; it is not possible to place any given chimpanzee in more than one com-
munity within a single day. Leaving a community, whether to join another or not, ends this period of community
membership. Another row in COMM_MEMBS is required to record a newer period of community membership, whether
in the same or a different community.

An individual may not be recorded in more than one community on any given day, although there may be days
during which the individual is not placed in any community. Further, an individual may not be placed in the same
community, by use of two COMM_MEMBS rows, on the same day. There can be no “overlap” of COMM_MEMBS rows.
The StartDate to EndDate intervals, of all the COMM_MEMBS rows with a given AnimID, may not overlap.

Two COMM_MEMBS rows may not be used to place a single individual in the same community on successive days.
Instead, combine the two COMM_MEMBS rows into one. The StartDate of an individual with a given CommID may
not be the day after the EndDate of a COMM_MEMBS row having the same AnimID value.

An individual may not be placed in a community unless that individual is under study; the StartDate may not be
before the individual’s BIOGRAPHY_DATA.EntryDate and the EndDate may not be after the individual’s BIOG-
RAPHY_DATA.DepartDate.

The StartDate must not be after the EndDate.

CommMID (Community Memberships IDentifier)

A unique, automatically generated, positive integer which serves to identify the row. The value of this column
cannot be changed. This column may not be NULL.

AnimID (Animal IDentifier)

The BIOGRAPHY_DATA.AnimID which identifies the chimpanzee who’s community membership is recorded.
This column may not be NULL.

StartDate

The date on which the individual joined the community; the start date, inclusive, of the interval of continuous
membership. This column may not be NULL.

EndDate

The last date on which the individual was a community member; the end date, inclusive, of the interval of contin-
uous membership This column may not be NULL.

CommID (Community IDentifier)

The COMM_IDS.CommID identifying the community in which the row records membership. This column may
not be NULL.

1.5. Data Tables 17

SokweDB Technical Documentation

StartSource

The COMM_MEMBS_SOURCES.CommMembsSource value which identifies the data source used to determine
the StartDate. This column may not be NULL.

EndSource

The COMM_MEMBS_SOURCES.CommMembsSource value which identifies the data source used to determine
the EndDate. This column may not be NULL.

1.5.4 COMM_MEMB_LOG

Each row is a log entry describing a change in an individual chimpanzee’s community membership. All community
membership changes starting from 2013-12-01 are recorded here.

This is meta-information which records history concerning the state of the database.

CommMLID (Community Membership Log IDentifier)

A unique, automatically generated, positive integer which serves to identify the row. The value of this column
cannot be changed. This column may not be NULL.

DateOfUpdate

The date the database was updated to reflect the change in community membership. This value cannot be before
2013-12-01 and cannot be after the current date. This column may not be NULL.

AnimID (Animal IDentifier)

The BIOGRAPHY_DATA.AnimID which identifies the chimpanzee who’s community membership was updated.
This column may not be NULL.

Description

A description of the change made to community membership. This column may not be NULL. This column may not
be empty text, its textual values must contain characters and must contain at least one non-whitespace character.

Rationale

The rationale for the change in community membership. This column may be empty text. It need not contain
characters, but it may not contain only whitespace characters. This column may not be NULL.

MadeBy

The PEOPLE.Person designating the researcher who determined that the community membership should be
changed. This column may not be NULL.

18 Chapter 1. Technical Documentation

SokweDB Technical Documentation

1.6 Data Retrieval Views

The views appearing in this section exist for convenience in querying. Some exist to make the data look more
like the “old” data, as it appeared in the old MS Access database. Others reproduce common query patterns,
eliminiating the need to connect (join) multiple tables.

View One row for each Purpose Tables/Views used
BIOGRAPHY BIOGRAPHY_DATA row Reproduce “old” data BIOGRAPHY_DATA

1.6.1 BIOGRAPHY

Each row represents a chimpanzee and is a transformation of the corresponding BIOGRAPHY_DATA row, making
the data more like the traditional format and therefore, in one sense, easier to work with. This view contains one
row for each chimpanzee on which data has ever been recorded (in SokweDB), and an additional row for UNK a
generic value used when a chimpanzee is unrecognized. BIOGRAPHY contains the basic demographic data of
individual chimpanzees.

Definition

CREATE OR REPLACE VIEW biography (
animid
,animidnum
,animname
,birthcomm
,bccertainty
,sex
,momid
,dadid
,dadidpub
,firstborn
,birthdate
,bdmin
,bdmax
,bddist
,entrydate
,entrytype
,departdate
,departtype)
AS
SELECT

biography_data.animid
,biography_data.animidnum
,biography_data.animname
,biography_data.birthcomm
,biography_data.bccertainty
,biography_data.sex
,biography_data.momid
,CASE
WHEN biography_data.dadprelim
THEN biography_data.dadid || '_prelim'

ELSE biography_data.dadid
END CASE
,biography_data.dadidpub

(continues on next page)

1.6. Data Retrieval Views 19

SokweDB Technical Documentation

(continued from previous page)

,biography_data.firstborn
,biography_data.birthdate
,biography_data.bdmin
,biography_data.bdmax
,biography_data.bddist
,biography_data.entrydate
,biography_data.entrytype
,biography_data.departdate
,biography_data.departtype

FROM biography_data;

Columns in the BIOGRAPHY View

Table 1: The Columns in BIOGRAPHY

Column From Description
AnimID BIOGRAPHY_DATA.AnimID Animal IDentifier
AnimIDNum BIOGRAPHY_DATA.AnimIDNum Animal IDentifier Number
AnimName BIOGRAPHY_DATA.AnimName Animal Name
BirthComm BIOGRAPHY_DATA.BirthComm Birth Community
BCCertainty BIOGRAPHY_DATA.BCCertainty Certainty of BirthComm
Sex BIOGRAPHY_DATA.Sex Individual’s Sex
MomID BIOGRAPHY_DATA.MomID AnimID of the individual’s mother
DadID

BIOGRAPHY_DATA.DadID
BIOGRAPHY_DATA.DadPrelim

AnimID of the individual’s father, suffixed
with _prelim if DadPrelim is TRUE

DadIDPub BIOGRAPHY_DATA.DadIDPub Publication of Paternity citation
FirstBorn BIOGRAPHY_DATA.FirstBorn First born status code
BirthDate BIOGRAPHY_DATA.BirthDate Birth Date
BDMin BIOGRAPHY_DATA.BDMin Minimum Birth Date
BDMax BIOGRAPHY_DATA.BDMax Maximum Birth Date
BDDist BIOGRAPHY_DATA.BDDist Birth Date Distribution
EntryDate BIOGRAPHY_DATA.EntryDate Date of study Entry
EntryType BIOGRAPHY_DATA.EntryType Entry status code
DepartDate BIOGRAPHY_DATA.DepartDate Date last seen
DepartType BIOGRAPHY_DATA.DepartType Depart date status code

Operations Allowed

None.

1.7 SQL Functions

The functions documented here may be useful when writing SQL.

The database contains a large number of functions but only those documented below are expected to be used directly
by the database users.

20 Chapter 1. Technical Documentation

SokweDB Technical Documentation

1.7.1 julian() – Convert a date to an integer which counts up by day

Synopsis

julian(date DATE) INT
julian(date TIMESTAMP) INT

Input

date

A DATE or a TIMESTAMP.

Description

Convert a date or a timestamp to a julian date. Supply this function with a DATE (or a TIMESTAMP) and it returns
the integer that represents the given date as the number of days since a particular reference date. This number is
known as the Julian date representation of the given date. (Day number 2,361,222 is September 14, 1752.) Legal
values for the date are between September 14, 1752 and December 31, 9999, inclusive.

1.7.2 julian_to() – Convert an integer which counts days to a date

Synopsis

julian_to(julian INT) DATE

Input

julian

An integer representing a julian date.

Description

Converts a julian date value to a regular date value. This function reverses the julian() function.

1.8 APPENDIXES

Contents

• APPENDIXES

– Technologies Used

1.8. APPENDIXES 21

SokweDB Technical Documentation

1.8.1 Technologies Used

These technologies are used by SokweDB. The desire is to keep the number of technologies to a minimum to keep
development simple.

Operating System Components and Services

• The Microsoft Azure cloud

• The Linux Operating System Kernel

• The Ubuntu Linux Distribution

• The Internet/Web/Web Browsers and related technology

• The PostgreSQL database engine

• The Postfix Mail Transfer Agent

• The Nginx webserver

• The gitweb source code repository web interface

• The Letsencrypt.org security certificate toolset and services

• The MediaWiki wiki engine

• The php-fpm PHP interpreter

Although the operating system level components have been chosen with care, they are more-or-less interchangeable
with similar, stock, components. Each may be swapped out when this is found convenient. The exception is the
PostgreSQL database engine. SokweDB depends upon specific PostgreSQL characteristics and features.

Development Tools

• The SQL database query and construction language

• The PL/pgSQL PostgreSQL database extension language

• The Python3 programming language

• The Pyramid web development framework

• The M4 macro programming language

• The PHP programming language (deprecated)

• The git revision control system

• The bash shell scripting language

• The make build system tool

Documentation Tools

• The ReStructured Text (RST) markup lanugage

• The Sphinx RST processor

• The Inkscape SVG vector graphics editor

22 Chapter 1. Technical Documentation

https://trypyramid.com/
https://en.wikipedia.org/wiki/M4_(computer_language)
https://docutils.sourceforge.io/docs/ref/rst/introduction.html
https://www.sphinx-doc.org/

SokweDB Technical Documentation

1.9 Indices and tables

• genindex

• search

1.9. Indices and tables 23

	Technical Documentation
	Introduction
	About This Document
	Conventions
	A Guide for the Reader

	System Design
	About Databases
	About Tables
	About Views
	About Schemas

	System Architecture
	Databases
	sokwedb
	sokwedb_test
	sokwedb_dev

	Special Data Values
	Dates and Times
	Input and Output Representations
	Time Zones

	Users and Database Permissions
	The Administrator Permission Level
	Superusers (aka Administrators)
	Developers

	Schemas
	The sokwedb schema
	The codes schema
	The upload schema
	The lib schema
	The per-user private schemas

	Entity Relationship Diagrams
	Key
	Demography

	Code Tables
	COMM_IDS (Community IDentifiers)
	Special Values
	Column Descriptions
	CommID (Community IDentifier)
	Name
	Notes
	MembCriteria (Membership Criteria)

	COMM_MEMBS_SOURCES (COMMunity MEMBershipS SOURCES)
	Special Values
	Column Descriptions
	CommMembsSource
	Description

	DEPARTTYPES (community Departure reasons)
	Special Values
	Column Descriptions
	DepartType
	Description

	ENTRYTYPES (community Entry reasons)
	Special Values
	Column Descriptions
	EntryType
	Description

	PEOPLE
	Special Values
	Column Descriptions
	Person
	Name
	Description

	Active

	Data Tables
	BIOGRAPHY_DATA
	AnimID (Animal IDentifier)
	AnimIDNum (Animal IDentifier Number)
	AnimName (Animal Name)
	BirthComm (Birth Community)
	BCCertainty (Birth Community Certainty)
	Sex
	MomID (Mother’s AnimID)
	DadID (Father’s AnimID)
	DadPrelim (Is Paternity Preliminary?)
	DadIDPub (Publication of Paternity)
	FirstBorn
	BirthDate
	BDMin (Minimum Birth Date)
	BDMin (Maximum Birth Date)
	BDDist (Birth Date Distribution)
	EntryDate
	EntryType
	DepartDate
	DepartType

	BIOGRAPHY_LOG
	BLID (Biography Log IDentifier)
	DateOfUpdate
	AnimID (Animal IDentifier)
	Description
	Rationale
	MadeBy

	COMM_MEMBS
	CommMID (Community Memberships IDentifier)
	AnimID (Animal IDentifier)
	StartDate
	EndDate
	CommID (Community IDentifier)
	StartSource
	EndSource

	COMM_MEMB_LOG
	CommMLID (Community Membership Log IDentifier)
	DateOfUpdate
	AnimID (Animal IDentifier)
	Description
	Rationale
	MadeBy

	Data Retrieval Views
	BIOGRAPHY
	Definition
	Columns in the BIOGRAPHY View
	Operations Allowed

	SQL Functions
	julian() – Convert a date to an integer which counts up by day
	Synopsis
	Input
	date

	Description

	julian_to() – Convert an integer which counts days to a date
	Synopsis
	Input
	julian

	Description

	APPENDIXES
	Technologies Used
	Operating System Components and Services
	Development Tools
	Documentation Tools

	Indices and tables

